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Growth of interfaces with a conservation law and spatial-temporal correlations
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The interfacial growth with a conservation law is analyzed using the dynamic-renormalization-group
method. The fixed point is found for the case of long-range spatially and temporally correlated noise.
The scaling exponents Y and z are obtained. The result shows that long-range spatial correlations and
temporal correlations roughen the interface. The results are compared with those of Medina et al.
[Phys. Rev. A 39, 3053 (1989)] and Sun, Guo, and Grant [Phys. Rev. A 40, 6763 (1989)].
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The dynamics of a growing interface is a challenging
problem of both theoretical and practical interest [1-15].
It is closely related to many growing phenomena; exam-
ples include layered growth by molecular-beam epitaxy
or chemical vapor deposition, development of ordered
phase by spinodal decomposition [2], propagation of
cluster growth in diffusion-limited aggregation and Eden
models [4], etc. Common to these problems is the ex-
istence of a surface or interface where active growth
occurs. Although complicated patterns appear during
the growth, there exist late-time regimes when a dom-
inant large length develops and the growth shows scale
invariance. Renormalization-group (RG) techniques,
successful in the study of static collective phenomena,
have been extended to dynamics and reveal a much more
complicated structure of universality classes than the cor-
responding static case [16—18].

Kardar, Parisi, and Zhang (KPZ) proposed an ex-
tremely interesting nonlinear differential equation which
gives interfacial-growth exponents consistent with nu-
merical simulations of ballistic aggregation and Eden
model in the spatial dimension d =1 [5]. Then, Medina,
Hwa, Kardar, and Zhang (MHKZ) presented a detailed
dynamic-RG analysis of this equation subject to space-
and time-correlation noise [11]. After that, Sun, Guo,
and Grant (SGG) investigated the dynamics of a growing
interface with conservation of total volume under the in-
terface and white noise using both dynamic RG and com-
puter simulation [12]. Recently, RG results for the long-
range spatial correlations and conserved growth have
been presented by Lam and Family (LF) [14]. In this
Brief Report we perform a dynamic-RG analysis on the
growing interface with a conservation law and space-time
correlations.

We consider the case where the noise has long-range
spatial-temporal correlations. The dynamics of a grow-
ing interface with a conservation law is described by the
model [12]

3h
ot

A

=—V? |V2h+ (VR | +q(x,1), (1)

which is written in Fourier space as
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h(k,0)=hy(k co)—%Go(k,w)kz

qu,ﬂ {la-(k—q)]h(g,Q)
Xh(k—q,0—Q)} , (2)

where
holk,0)=Gylk,0)n(k,0) , (3)
Go(k,a))=(—ia)+vk4)_1

(n(k,0)n(q,Q))=2D"(k,0)k?8%k+¢)8(w+Q)
=2D(k,0)8%k+q)8(0+Q), (4

and fq’nz‘fddq dQ(27)~4*1D, Equation (2) is a con-
venient starting point for a perturbation calculation of
h(k,w) in powers of A as in Ref. [11]. After going
through calculations very similar to those of MHKZ, we
arrived at the following set of differential recursion rela-

tions for the functional renormalization of v, A, and
D(k,w):
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D*(1,vz)
fd Ty (10)

We look for a fixed function of the form
D(k,0)=Dy+Dgk "X w/wy) "% where the factor
wo=vA? (A=1) is included to make the argument dimen-
sionless. The more complicated case involving nonsepar-
able D(k,w) will not be treated here. The relevant in-
tegrals needed are evaluated using contour integration.
The results are

D,(1)=Dy+Dy(1+28)sec(76) , (11)

D, (1)f1(1)=(—2p+2)D,y(1+20)sec(70) , (12)

D3(1)=D%+2DyD,(1+26)sec(m0)
D}(1+40)sec(2m0) , (13)

where 0<0=(%). Expressed in terms of dimensionless
parameters U, =K,A*D,/v’ and Uy=K A*Dy/v’, the
recursion relations show in the hydrodynamic limit
(k—0, 9—0)

D3(1)=

dv 4—d
ST R S
+U9t£’~:—dzﬂlz—(1+ze)secme) , a8
dr
15
= Mx+z—4l, (15)
dU,
— = Uelz(1+20)—2y—d +2p—2] , (16)
du, U3
7=U0(2—2X~d)+T+%UOU9(1+20)sec(7r€)
+1U%(1+40)sec(276) . (17)

We can solve the fixed point from the recursion relation.
The exponents are

_2—d+2p+86 18
3+20 s

_10+d—2p (19)
3420

A stable fixed point in the physical region (U,

20,Us20) is found for 0=0=(4). The situation is

changed for 6> (}); more divergent terms are generated

by RG, giving the fixed function an essential singularity
at ®=0. As a consequence the above RG analysis is not
used for 6> (1).

MHKZ analyzed the KPZ equation subject to space

and time correlations in detail. They solved the off-axis
fixed point as a function of the dimensionality d and p in
the presence of spatial correlation in region B [11] and
obtain the scaling exponents z=(4+d—2p)/3 and
x=(2—d +2p)/3. They showed that the very-long-
range spatial correlations (large p) tend to roughen the
surface. With temporal correlations, it is hard to give a
simple expression because of the absence of Galilean in-
variance. They proposed a heuristic method, gave some
numerical results, and showed that frequency integrals

contributing to one-loop propagator and vertex correc-
tion will have ultraviolet dlvergence if the full form of

D*(w) [D*(w)=Dy+D,0 ~'+D,o0 2% s the fixed
function] is used and a cutoff must be made as D*(w) is
really only the behavior in the @ —0 limit.

SGG considered that the universality classes in non-
equilibrium are determined not only by the symmetry of
the order parameter and the dimension of space, but also
by the presence or absence of conservation laws, mode
coupling, and Poisson-bracket relations. They investigat-
ed the dynamics of a growing interface with a conserva-
tion law and a white noise [12], and found a fixed point
z=(10+d)/3, x=(2—d)/3. The hyperscaling relation
between Y and z satisfies identity y+z=4. This is a
consequence of the conservation law, which breaks the
Galilean invariance as discussed by KPZ.

LF investigated the effects of long-range correlated
noise on the dynamics of a conserved growing interface.
They gave the fixed-point exponents y=(2—d’'+2p)/3,
z=(10+d’'—2p)/3 and found for d' <2 any amount of
spatial correlation is relevant and leads to a universality
class different from that of the uncorrelated white noise.

In this report, we have solved for the fixed point in in-
terface growth with a conservation law and long-range
spatially and temporally correlated noise. The exponents
X and z are quite similar to those of SGG and LF except
for additional spatial and temporal correlation effects.
The results shows a fixed point in the region 0 <6 =<(1) in
the hydrodynamic limit. The temporal correlations also
tend to roughen the interface like that of long-range spa-
tial correlations. When k and w become large, it is hard
to find a simple expression for y and z. The result also in-
dicates that in the region 6>(1), the dynamic-RG
method is no longer applicable for solving such interface
growth.

Many investigations still need to be done to gain deep
insight into the nature of interface growth with correla-
tions. Numerical simulations are expected to prove the
above result.
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